دليل العلماء والمهندسين لمعالجة الإشارات الرقمية من قبل ستيفن W. سميث، دكتوراه في الطب. وهناك ميزة هائلة لمرشح المتوسط المتحرك هو أنه يمكن تنفيذه بخوارزمية سريعة جدا. لفهم هذه الخوارزمية، تخيل تمرير إشارة الدخل، x، من خلال سبع نقاط مرشح المتوسط المتحرك لتشكيل إشارة الإخراج، y. ننظر الآن في كيفية حساب نقطتي خرج متجاورتين، y 50 و y 51: هذه هي نفس نقاط الحساب تقريبا x 48 إلى x 53 يجب أن تضاف إلى y 50، ومرة أخرى y y 51. إذا تم حساب y 50 بالفعل ، الطريقة الأكثر فعالية لحساب ذ 51 هو: مرة واحدة تم العثور على 51 باستخدام y 50، ثم y 52 يمكن حسابها من عينة ذ 51، وهلم جرا. بعد حساب النقطة الأولى في y، كل من النقاط الأخرى يمكن العثور عليها مع إضافة واحدة فقط والطرح لكل نقطة. ويمكن التعبير عن ذلك في المعادلة: لاحظ أن هذه المعادلة تستخدم مصدرين للبيانات لحساب كل نقطة في المخرجات: نقاط من المدخلات والنقاط المحسوبة سابقا من المخرجات. وهذا ما يسمى المعادلة المتكررة، وهذا يعني أن نتيجة حساب واحد يستخدم في الحسابات المستقبلية. (المصطلح العودية له أيضا معان أخرى، وخاصة في علوم الكمبيوتر). يناقش الفصل 19 مجموعة متنوعة من الفلاتر العودية بمزيد من التفصيل. كن على علم بأن المرشح المتكرر للمتوسط المتحرك يختلف كثيرا عن المرشحات العودية النموذجية. على وجه الخصوص، فإن معظم المرشحات التكرارية لديها استجابة الاندفاع طويلة بلا حدود (إير)، تتألف من الجيوب الأنفية والأسي. والاستجابة النبضية للمتوسط المتحرك هي نبضة مستطيلة (الاستجابة النبضية المحدودة، أو منطقة معلومات الطيران). هذه الخوارزمية أسرع من المرشحات الرقمية الأخرى لعدة أسباب. أولا، هناك حسابين فقط لكل نقطة، بغض النظر عن طول نواة الفلتر. ثانيا، الجمع والطرح هي العمليات الرياضيات الوحيدة المطلوبة، في حين أن معظم المرشحات الرقمية تتطلب الضرب تستغرق وقتا طويلا. ثالثا، مخطط الفهرسة بسيط جدا. كل مؤشر في إق. يتم العثور على 15-3 عن طريق إضافة أو طرح الثوابت الصحيحة التي يمكن حسابها قبل بدء التصفية (أي p و q). رابعا، يمكن تنفيذ خوارزمية كاملة مع تمثيل صحيح. اعتمادا على الأجهزة المستخدمة، يمكن أن تكون الأعداد الصحيحة أكثر من أمر من حجم أسرع من نقطة العائمة. والمثير للدهشة أن التمثيل الصحيح يعمل بشكل أفضل من النقطة العائمة مع هذه الخوارزمية، بالإضافة إلى كونها أسرع. خطأ الجولة من الحساب العائم نقطة يمكن أن تنتج نتائج غير متوقعة إذا لم تكن حذرا. على سبيل المثال، تخيل إشارة عينة 10000 يتم تصفيتها باستخدام هذه الطريقة. وتحتوي العينة الأخيرة في الإشارة التي تمت تصفيتها على الخطأ المتراكم البالغ 000 10 إضافة و 000 10 طرح. يظهر هذا في إشارة الإخراج كإزاحة الانجراف. إنتيجرز لا تملك هذه المشكلة لأنه لا يوجد خطأ جولة في الحساب. إذا كان يجب استخدام نقطة عائمة مع هذه الخوارزمية، البرنامج في الجدول 15-2 يوضح كيفية استخدام تراكم الدقة المزدوجة للقضاء على هذا الانجراف. في الإحصاءات متوسط متحرك بسيط هو خوارزمية تحسب المتوسط غير المرجح من عينات ن الماضي. وعادة ما تسمى المعلمة n بحجم النافذة، لأن الخوارزمية يمكن اعتبارها نافذة تنزلق فوق نقاط البيانات. باستخدام صيغة عودية للخوارزمية، يتم تقليل عدد العمليات المطلوبة لكل عينة إلى إضافة واحدة، وطرح واحد وقسم واحد. منذ صياغة مستقلة عن حجم النافذة ن. التعقيد وقت التشغيل هو (1). أي ثابت. والصيغة العودية للمتوسط المتحرك غير المرجح هي حيث يكون المتوسط المتوسط المتداول ويمثل x نقطة بيانات. لذلك، كلما تنزلق النافذة إلى اليمين، نقطة بيانات واحدة، الذيل، يتسرب ونقطة بيانات واحدة، الرأس، يتحرك في. التنفيذ تنفيذ المتوسط المتحرك البسيط يجب أن يأخذ ما يلي في الاعتبار تهيئة الخوارزمية ما دام لم يتم ملء النافذة بالكامل مع القيم، فشل صيغة عودية. التخزين مطلوب الوصول إلى عنصر الذيل، والتي اعتمادا على تنفيذ يتطلب تخزين العناصر ن. يستخدم تطبيقي الصيغة المقدمة عندما يتم ملء النافذة بالكامل بالقيم، ويتحول بطريقة أخرى إلى الصيغة التي تقوم بتحديث الوسط من خلال إعادة حساب مجموع العناصر السابقة. لاحظ أن هذا يمكن أن يؤدي إلى عدم الاستقرار العددي بسبب الحساب العائم نقطة. وفيما يتعلق استهلاك الذاكرة، وتنفيذ يستخدم متكررات لتتبع الرأس والذيل العناصر. وهذا يؤدي إلى تنفيذ مع متطلبات الذاكرة الثابتة مستقلة عن حجم النافذة. هنا هو إجراء التحديث الذي ينزلق النافذة إلى اليمين. في معظم المجموعات تبطل العدادين عند تعديل المجموعة الأساسية. غير أن التنفيذ يعتمد على عدد صحيح من الباحثين. ولا سيما في التطبيقات القائمة على التدفق، تحتاج المجموعة الأساسية إلى تعديلها عند وصول عنصر جديد. طريقة واحدة للتعامل مع ذلك هو إنشاء بسيطة حجم دائري حجم ثابت من حجم N1 أن يبطل أبدا تكراراتها وإضافة عنصر بالتناوب واستدعاء التحول. أتمنى أن أستطيع معرفة كيفية تنفيذ هذا فعلا، حيث أن وظيفة الاختبار مربكة جدا بالنسبة لي 8230 هل أحتاج إلى تحويل البيانات إلى صفيف، ثم تشغيل سما سما جديد سما (20، صفيف) لمدة 20 فترة سما كيف يمكنني التعامل مع شيفت () هل من الضروري تنفيذ منشئين. (آسف للارتباك). لا تحتاج don8217t لتحويل البيانات الخاصة بك إلى صفيف طالما البيانات الخاصة بك ينفذ IEnumerable1 ونوع تعداد مزدوج. بقدر ما يتعلق الأمر الرسائل الخاصة بك تحتاج إلى تحويل داتارو إلى شيء أن عدد لا يحصى من القيم المزدوجة. نهجك يعمل. شيفت، الشرائح نافذة موقف واحد إلى اليسار. لمجموعة البيانات من 40 القيم ويقول 20 سما فترة لديك 21 مواقف نافذة يناسب في (40 8211 20 1). في كل مرة تقوم فيها باستدعاء شيفت () يتم نقل الإطار إلى اليسار بموقف واحد، ويقوم متوسط () بإرجاع سما لموقف النافذة الحالي. وهذا يعني، المتوسط غير المرجح لجميع القيم داخل النافذة. بالإضافة إلى ذلك بلدي التنفيذ يسمح لحساب سما حتى لو لم يتم ملء نافذة بالكامل في البداية. لذلك في جوهر نأمل أن يساعد هذا. أي أسئلة أخرى حقوق النشر إشعار كريستوف هيندل و cheind. wordpress، 2009-2012. ممنوع الاستخدام غير المصرح به أندور الازدواجية من هذه المادة دون إذن صريح وخطي من هذه بلوق المؤلف صاحب أندور ممنوع منعا باتا. ويمكن استخدام مقتطفات وروابط، شريطة أن يتم إعطاء الائتمان الكامل والواضح لكريستوف هيندل و cheind. wordpress مع الاتجاه المناسب والمحدد للمحتوى الأصلي. المشاركات الأخيرة متوسط متوسط المرشحات المتحركة متوسط عدد عينات المدخلات وإنتاج عينة إخراج واحدة. ويؤدي هذا الإجراء المتوسط إلى إزالة مكونات التردد العالي الموجودة في الإشارة. وعادة ما تستخدم فلاتر المتوسط المتحرك كمرشحات تمرير منخفضة. في خوارزمية التصفية العودية، تؤخذ عينات الإخراج السابقة أيضا لتحديد المتوسط. ويبلغ متوسط المرشح المتحرك عددا من عينات المدخلات وينتج عينة خرج واحدة. ويؤدي هذا الإجراء المتوسط إلى إزالة مكونات التردد العالي الموجودة في الإشارة. وعادة ما تستخدم فلاتر المتوسط المتحرك كمرشحات تمرير منخفضة. في خوارزمية التصفية العودية، تؤخذ عينات الإخراج السابقة أيضا لتحديد المتوسط. هذا هو السبب في أن رد الفعل الاندفاع يمتد إلى ما لا نهاية. كيفية استخدام برنامج العينة يحتوي ملف. zip على كل من شفرة المصدر والتنفيذ. لتجميع وتشغيل التعليمات البرمجية المصدر تحتاج إلى تثبيت فيسوال باسيك 6.0 في جهاز الكمبيوتر الخاص بك. لتشغيل الملف القابل للتنفيذ، يجب تحميل وتثبيت ملفات وقت التشغيل فيسوال باسيك 6.0. تشغيل movavgfilt. exe وسترى النافذة الرئيسية. في النافذة الرئيسية. الجزء العلوي معظمها هو مولد وظيفة. والتي تنتج موجات مختلفة لاختبار الفلتر. يمكننا تغيير تفاعلي السعة، تردد وشكل إشارة ولدت. لاختبار البرنامج يجب علينا أولا توليد الموجي المناسب. هنا سوف تولد الموجي المعقدة التي تتكون من ترددين مختلفين. ترك كل شيء في الإعدادات الافتراضية وانقر على زر كوتجينيراتيكوت. الآن يمكنك ان ترى إشارة 10 هرتز في الرسم البياني بجانب مولد إشارة. ويبين الشكل أدناه شكل الموجة. الآن تغيير التردد إلى 100 هرتز وانقر فوق زر كوتجينيراتيكوت مرة أخرى. يتم إضافة الموجي ولدت حديثا إلى شكل الموجي الحالي وشكل الموجة الناتجة يشبه موجة 10HZ الخطيئة مع 100 هرتز الضوضاء. انظر الموجي أدناه. هذا الموجي هو أفضل مناسبة لاختبار المرشح لأنه يحتوي على ترددين مختلفين. يمكنك تشغيل عامل التصفية بالنقر فوق الزر كوتفيلتركوت. من الخيارات المتاحة إلى اليسار إلى زر كوتفيلتركوت. يمكنك اختيار التكرار، التصفية غير العودية أو أي تصفية على الإطلاق. يوضح الشكل أدناه إخراج المرشح. تنزيل شفرة المصدر لمرشح المتوسط المتحرك
No comments:
Post a Comment